Decision Tree Complexity and Betti Numbers
نویسندگان
چکیده
منابع مشابه
-betti Numbers
The Atiyah conjecture predicts that the L-Betti numbers of a finite CW -complex with torsion-free fundamental group are integers. We show that the Atiyah conjecture holds (with an additional technical condition) for direct and inverse limits of groups for which it is true. As a corollary it holds for residually torsion-free solvable groups, e.g. for pure braid groups or for positive 1-relator g...
متن کاملDecision-tree Complexity
Two separate results related to decision-tree complexity are presented. The first uses a topological approach to generalize some theorems about the evasiveness of monotone boolean functions to other classes of functions. The second bounds the gap between the deterministic decision-tree complexity of functions on the permutation group Sn and their zero-error randomized decision-tree complexity.
متن کاملBetti numbers of subgraphs
Let G be a simple graph on n vertices. LetH be either the complete graph Km or the complete bipartite graph Kr,s on a subset of the vertices in G. We show that G contains H as a subgraph if and only if βi,α(H) ≤ βi,α(G) for all i ≥ 0 and α ∈ Z. In fact, it suffices to consider only the first syzygy module. In particular, we prove that β1,α(H) ≤ β1,α(G) for all α ∈ Z if and only if G contains a ...
متن کاملBetti Numbers and Injectivity Radii
The theme of this paper is the connection between topological properties of a closed orientable hyperbolic 3-manifold M and the maximal injectivity radius of M . In [4] we showed that if the first Betti number of M is at least 3 then the maximal injectivity radius of M is at least log 3. By contrast, the best known lower bound for the maximal injectivity radius of M with no topological restrict...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer and System Sciences
سال: 1997
ISSN: 0022-0000
DOI: 10.1006/jcss.1997.1495